The Crystal Structures of Some Mixed Halides of Lead

By J. Goodyear, S. A.D. Ali and W.J.Duffin
Physics Department, The University of Hull, England

(Received 10 May 1968)

Abstract

The crystal structures of $\mathrm{PbClBr}, \mathrm{PbClI}$ and PbBrI , determined from Weissenberg data, have been found to be isostructural with PbCl_{2}. For each structure the space group is Pnam and $Z=4$. The lattice parameters are $a=7.80_{4}, b=9.20_{9}, c=4.578 \AA(\mathrm{PbClBr}) ; a=8.818_{8}, b=9.64_{5}, c=4.595 \AA(\mathrm{PbCL}) ; a=8.67_{4}$, $b=10 \cdot 48_{3}, c=4 \cdot 448 \AA$ (PbBrI).

Introduction

The crystal structure of PbCl_{2} was determined by Braekken (1932) and partly refined by Sahl \& Zemann (1961). The structure is orthorhombic with 4 molecules per unit cell, each atom being situated at the equipoint $4(c)$ of the space group Pnam. $\mathrm{PbBr}_{2}, \alpha-\mathrm{PbF} 2, \mathrm{~Pb}(\mathrm{OH}) \mathrm{Cl}$ and $\mathrm{Pb}(\mathrm{OH}) \mathrm{Br}$ are known to be isostructural with PbCl_{2} (Wyckoff, 1963).

Specimens of $\mathrm{PbClBr}, \mathrm{PbClI}$ and PbBrI have recently been synthesized in this department for infrared phosphorescent study. Each material was prepared by heating to melting point a mixture, consisting of 50% by molecular weight of the two appropriate lead dihalides, in a sealed evacuated silica tube and allowing the sample to cool slowly for several days. In each case single crystals were formed which were suitable for X-ray analysis by the Weissenberg technique.

X-ray powder data for these materials were obtained with crystal monochromatized $\mathrm{Cu} K \alpha$ radiation using a focusing camera of 22.9 cm effective diameter. The powder pattern is very similar to that of PbCl_{2}, and each can be indexed on the basis of an orthorhombic cell with parameters close to those of PbCl_{2}. This evidence suggested that PbCl_{2} and the mixed halides of lead are isomorphous, and structure analyses of the latter have been carried out on this initial assumption. Lattice parameters calculated from powder data are compared with those of PbCl_{2} in Table 1 .

Table 1. Lattice parameters

Material	a	b	c
$\mathrm{PbCl}_{2}{ }^{*}$	$7.62 \AA$	$9.05 \AA$	$4.535 \AA$
PbClBr	7.80_{4}	9.20_{9}	4.578
PbClI	8.188	9.64_{5}	4.595
PbBrI	8.674	10.48_{3}	4.448

* Based on diffractometer data given by Swanson \& Fuyat (1953).

The crystals used in the analyses were elongated parallel to the c axis. Consequently, intensity data were obtained from c axis equi-inclination Weissenberg photographs taken with $\mathrm{Cu} K \alpha$ radiation. The data appropriate to each crystal were as follows:

	PbClBr	PbClI	PbBrI
	0.032	0.048	0.025
Mean radius (mm)	3.9	7.8	3.7
μr	$6 \cdot 40$		$\overline{-76}$
Macroscopic density (g.cm	$6 . \overline{80}$		
X-ray density (g.cm-3)	6.51	6.76	282
No. of observed reflexions	253	273	307
No. of possible reflexions	277	289	

No attempt was made to measure the densities of PbClI and PbBrI as it was known that the bulk material contained significant amounts of PbI_{2}.
For each analysis the intensities of reflexions on 3 layer lines were measured from multiple film exposures using a Joyce-Loebl flying spot microdensitometer; the intensities of weak reflexions had to be estimated visually against a calibrated scale. The systematically absent reflexions were such that $k+l=2 n$ for $0 k l$ and $h=2 n$ for $h 0 l$, consistent with the space group Pnam (a non-standard setting of Pnma).
The observed reflexions were corrected for the Lo-rentz-polarization factor and for spot shape on upper layer lines (Phillips, 1954). Absorption corrections given by Bond (1959) were also applied assuming that each crystal was approximately of cylindrical shape.

The determination of the structure

The atomic scattering factors used to calculate structure factors were those given in International Tables for X-ray Crystallography (1962) for $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$and neutral Pb and I .
Initially atoms were located at equipoint $4(c)$ of the space group Pnam at positions suggested by the PbCl_{2} structure. These preliminary structures were refined by a three-dimensional least-squares program (Daly, Stephens \& Wheatley, 1963) run on an Elliott 803 computer. After a few cycles of refinement, the atomic shifts became significantly less than the standard deviations. The final R values were 12.9% (PbClBr), $11 \cdot 5 \%$ (PbClI) and $11 \cdot 6 \%$ (PbBrI).
The final atomic parameters are listed in Table 2 together with those of PbCl_{2} given by Sahl \& Zemann (1961). Observed and calculated structure factors are compared in Table 3; in each analysis approximately half a dozen reflexions were found to be affected by
extinction, and the observed values for these have been obtained from powder data.

Discussion of the structure

The crystal structure of PbXY , where X and Y represent the lighter and heavier halogen ions, respectively,

Table 2. Atomic parameters (origin at $\overline{1}$) Standard deviations are given in parentheses.

	x	y	z	$B\left(\AA^{2}\right)$
	0.2617	0.0956	$\frac{1}{4}$	2.0
Pb	0.8610	0.0742	$\frac{1}{4}$	2.0
Cl	0.4768	0.8370	$\frac{1}{4}$	2.0
Cl 1	$0.2462(3)$	$0.1040(3)$	$\frac{1}{4}$	$4.47(06)$
Pb	$0.2462(14)$	$0.0675(12)$	$\frac{1}{4}$	$3.30(21)$
Cl	$0.8584(12$.	$\frac{1}{4}$	$3.44(09)$	
Br	$0.4732(7)$	$0.8322(5)$	$\frac{1}{4}$	$4.29(05)$
Pb	$0.2078(3)$	$0.1251(2)$	$\frac{1}{4}$	$2.18(17)$
Cl	$0.8600(12)$	$0.0620(10)$	$\frac{1}{4}$	2.
I	$0.4707(3)$	$0.8307(3)$	$\frac{1}{4}$	$2.31(05)$
Pb	$0.1624(2)$	$0.1578(2)$	$\frac{1}{4}$	$3.33(05)$
Br	$0.8412(3)$	$0.5542(4)$	$\frac{1}{4}$	$1.80(07)$
I	$0.5007(3)$	$0.8288(2)$	$\frac{1}{4}$	$2.42(06)$

is shown diagrammatically in Fig. 1 which has been drawn from the data for PbClI . The positions of the halogen ions in the mixed halides, particularly PbClBr and PbClI , are very similar to those of chlorine in PbCl_{2}. There is, however, a prominent shift in the location of the lead ion as one progresses from the structure of PbCl_{2} at one end of the series to that of PbBrI at the other. This shift is such as to increase the $\mathrm{Pb}-\mathrm{Y}$ separation in the $x y$-plane; for instance in PbCl_{2} the separation ($2.86 \AA$) is of the same order of magnitude as the sum of the ionic radii, whereas in PbBrI it is so great ($4.53 \AA$) that the ions can hardly be thought of as being adjacent.
Each lead ion is surrounded by 2 X and 1 Y in the same $x y$-plane and 1 X and 2 Y lying in each adjacent plane. The nearest halogens to X are 2 Y in the same $x y$-plane and 1 X and 2 Y in the neighbouring planes. Each Y ion has a halogen coordination of ten, 2 X and 2 Y in the same $x y$-plane and 2 X and 1 Y in each neighbouring plane. Bond lengths for PbCl_{2} and the mixed halides are given in Table 4. It will be seen that there is a wide range of bond lengths between any particular

Table 3. Observed and calculated structure factors for (a) $\mathrm{PbClBr},(b) \mathrm{PbClI}$ and (c) PbBrI
Refiexions too weak to be observed are allocated an intensity $I_{0}=I_{\mathrm{min}} / 2$, where I_{min} is the smallest intensity on the scale used for visual estimates. Observed structures factors for the following reflexions were obtained from powder data: (a) $020,120,130$, $400,111,122,132,142$; (b) 400, 310, 401, 211,312 ; (c) $020,250,310,031$.
(a)

[^0]
(b)

?

Fig. 1. Projection of the structure of PbXY on the (001) face of the unit cell. X and Y represent the lighter and heavier halogen atoms respectively. Atoms labelled (1) and (2) are at $z=\frac{1}{4}$ and those labelled (3) and (4) at $z=\frac{3}{4}$.

Table 3 (cont.)
(c)

[^1]Table 4. Bond lengths
Standard deviations are given in parentheses. Identification of atoms as in Fig. 1.

Bond		PbClBr		PbClI		PbBrI		PbCl_{2}	
$\mathrm{Pb}(1)-\mathrm{X}(1)$		3.044 (10)		2.913 (8) \AA		2.990 (4)		3.06	
-X(2)		$3 \cdot 151$ (10)		$3 \cdot 265$ (8)		3.393 (4)		3.08	
-X(3)		$2 \cdot 898$ (10)	$2 \times$	2.974 (8)	$2 \times$	$3 \cdot 145$ (4)	$2 \times$	$2 \cdot 90$	$2 \times$
-Y(1)		3.065 (5)		$3 \cdot 565$ (3)		4.529 (3)		2.86	
-Y(3)		$3 \cdot 223$ (5)	$2 \times$	3.520 (3)	$2 \times$	3.675 (3)	$2 \times$	3.08	$2 \times$
-Y(4)		3.548 (5)	$2 \times$	$3 \cdot 367$ (3)	$2 x$	$3 \cdot 188$ (3)	$2 \times$	3.64	$2 \times$
$\mathrm{X}(1)-\mathrm{X}(3)$		$3 \cdot 416$ (14)	$2 \times$	3.459 (12)	$2 \times$	3.719 (5)	$2 \times$	$3 \cdot 38$	$2 \times$
-Y(1)		3.706 (10)		3.890 (8)		3.783 (4)		3.63	
$\mathrm{X}(1)-\mathrm{Y}(2)$	$\mathrm{Y}(1)-\mathrm{X}(2)$	$3 \cdot 788$ (10)		3.894 (8)		$4 \cdot 247$ (4)		$3 \cdot 82$	
-Y(3)	-X(3)	$3 \cdot 575$ (10)	$2 \times$	3.699 (8)	$2 \times$	3.905 (4)	$2 \times$	$3 \cdot 52$	$2 \times$
-Y(4)	-X(4)	$3 \cdot 594$ (10)	$2 \times$	3.730 (8)	$2 \times$	3.887 (4)	$2 \times$	$3 \cdot 51$	$2 \times$
$\mathrm{Y}(1)-\mathrm{Y}(2)$		$4 \cdot 186$ (6)	$2 \times$	4.379 (3)	$2 \times$	$4 \cdot 641$ (4)	$2 \times$	$4 \cdot 12$	$2 \times$
-Y(3)		$3 \cdot 869$ (6)	$2 \times$	4.022 (3)	$2 \times$	$4 \cdot 223$ (4)	$2 \times$	$3 \cdot 74$	$2 \times$

pair of ions, showing that the arrangement of the halogen ions departs considerably from a close-packed array. In each structure the shortest bond length between any two halogen ions is less than the sum of the ionic radii as given by Clark (1955).

We wish to thank Dr I.S.Robertson for making specimens available to us for analysis. We are grateful
to Dr P.J.Wheatley of Monsanto Research S.A. and Dr H.H.Sutherland of this department for permitting us to use the computer programs used in this investigation. One of us (S.A.D.A.) is indebted to the University of Damascus for the award of a research studentship. Finally, we wish to thank the Science Research Council for a grant which enabled us to purchase the flying spot microdensitometer used to measure intensities.

References

Bond, W. L. (1959). Acta Cryst. 12, 375.
Braekken, H. (1932). Z. Kristallogr. 83, 222.
Clark, G. L. (1955). Applied X-rays, 4th ed. New York: McGraw-Hill.
Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1963). Monsanto Research S. A. Final Report No. 52.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Phillips, D. C. (1954). Acta Cryst. 7, 746.
Sahl, K. \& Zemann, J. (1961). Naturwissenschaften 48, 641.

Swanson, H. E. \& Fuyat, R. K. (1953). N.B.S. circular 539, Vol. II, 45.
Wyckoff, R. W. G. (1963). Crystal Structures. 2nd ed. Vol. I, 298. New York: John Wiley.

Acta Cryst. (1969). B25, 800

The Crystal Structure of Copper Mercury Oxynitrate Trihydrate, $\mathbf{C u}\left(\mathbf{N O}_{3}\right)_{2} . \mathbf{H g O}_{\mathbf{~}}^{\mathbf{3}} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

By B. Kamenar
Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, Zagreb, Yugoslavia

(Received 19 April 1968)

Abstract

The crystal structure of copper(II) mercury(II) oxynitrate trihydrate has been determined by singlecrystal three-dimensional X-ray analysis. There are two formula units in the monoclinic unit cell of dimensions $a=7.33, b=8.87, c=6.75 \AA, \beta=112^{\circ} 32^{\prime}$ and space group $P 2_{1} / c$. The copper ion is coordinated by two oxygen atoms from two nitrate ions at $2 \cdot 14 \AA$, two oxygen atoms from two hydroxide ions at $2.15 \AA$ and two oxygen atoms from two water molecules at $2.02 \AA$ in an octahedron. Both hydroxide ions and both water molecules belong simultaneously to the mercury ion, at 2.30 and $2.54 \AA$ respectively, whose octahedral coordination is completed with nitrate-oxygen atoms at $2.78 \AA$. The octahedra about copper and mercury are linked alternately by sharing two opposite edges along the c axis as well as two opposite corners along the b axis. The solution of the structure shows that the best definition of the chemical formula of this compound is $\mathrm{HgCu}(\mathrm{OH})_{2}\left(\mathrm{NO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$.

Introduction

Among various basic salts there is a large group of those with the general formula $m \mathrm{MX}_{2} . n \mathrm{HgO} . x \mathrm{H}_{2} \mathrm{O}$ where $\mathrm{M}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$, and $\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{SeO}_{4}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{BrO}_{3}^{-}$. (André, 1887; Maihle, 1902; Finzi, 1913; Denk \& Dewald, 1951; Denk, Leschhorn \& Rosmer, 1962; Denk \& Leschhorn, 1966). With the exception of mercury oxyhalides, basic mercuric sulphates, chlorate and bromate where $\mathrm{M}=\mathrm{Hg}$, the structures of other salts are still unknown (Grdenić, 1965).

We have undertaken the crystal-structure investigation of the basic nitrate $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} . \mathrm{HgO} .3 \mathrm{H}_{2} \mathrm{O}$ in order to establish to which structural type it belongs (Basset, 1947). It was particularly interesting to find out the coordination about mercury in the presence of another metal. At the same time, in spite of many solved structures, the stereochemistry of copper still attracts attention. Not of less interest have been also the ligand properties of the nitrate ion, particularly since Wallwork \& Addison (1965) proposed its bidentate character in the structure of anhydrous α-copper(II) nitrate.

Experimental

$\left(\mathrm{NO}_{3}\right)_{2} \mathrm{Hg} . \mathrm{CuO} .5 \mathrm{H}_{2} \mathrm{O}$ is reported to have been obtained by dissolving mercuric oxide in an aqueous so-
lution of cupric nitrate (Maihle, 1902). By the same method $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} . \mathrm{HgO} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was prepared in the form of pale blue needle-shaped crystals ((Finzi, 1913). All our attempts to prepare both compounds have always resulted in the trihydrate.

The crystal data are as follows:

$$
\begin{array}{lc}
a=7.33 \pm 0.02 \AA & \text { Formula weight } 458.2 \\
b=8.87 \pm 0.02 & V=405.3 \AA^{3} \\
c=6.75 \pm 0.02 & \varrho{ }_{m}=3.74 \mathrm{g.cm} \\
\beta=112^{\circ} 32^{\prime} \pm 15^{\prime} & \varrho_{x}=3.75 \mathrm{~g} . \mathrm{cm}^{-3} \\
\text { Space group } P 2_{1} / c & Z=2
\end{array}
$$

The cell parameters were measured from oscillation and Weissenberg photographs. Density was determined pycnometrically. The systematic absence of reflexions $h 0 l$ for l odd and $0 k 0$ for k odd uniquely determined the space group as $P 2_{1} / c$. Except for some weak reflexions, all $h k l$ reflexions fulfil the condition $k+l=2 n$ required by the special positions of the heavy atoms. Three-dimensional intensity data ($h 0 l \ldots h 6 l, h k 0 \ldots h k 6$) were recorded on integrated equi-inclination Weissenberg photographs with multiple films with $\mathrm{Cu} K \alpha$ radiation and determined photometrically. Within the limiting sphere 526 independent reflexions were strong enough to be observed. After correction for Lorentz and polarization factors, the intensities were placed on the same

[^0]:

[^1]: H

